- 機器學習簡介
- 線性模型(迴歸分析)
- Regularization
- Support Vector Machine
- 分類樹
- Bagging 與 Random Forest
- Boosting 與 Gradient Boosted Decision Tree
- Neuron Network
Wush Wu
國立台灣大學





...| y | x | z |
|---|---|---|
| -3.449232 | -0.6264538 | 0.3981059 |
| 1.620552 | 0.1836433 | -0.6120264 |
| -3.757597 | -0.8356286 | 0.3411197 |
| 3.224672 | 1.5952808 | -1.1293631 |
| 4.443377 | 0.3295078 | 1.4330237 |
| -1.837960 | -0.8204684 | 1.9803999 |
| 3.248735 | 0.4874291 | -0.3672215 |
| 2.965666 | 0.7383247 | -1.0441346 |
| 4.317580 | 0.5757814 | 0.5697196 |
| -2.939782 | -0.3053884 | -0.1350546 |
y
x與y
x與y



x與y的關係
x與y的關係
x與y的關係
y到x與yy => 用常數做預測x與y => 用f(x)做預測
f越複雜,結果不一定越好f(x)如果不夠複雜:lack of fitf(x)如果過度複雜:overfittingz與y
z與y
y => z與yz並沒有包含太多y的資訊
z v.s. y的圖可以看出
x、z與y



| Dependent variable: | |
| dist | |
| speed | 3.932*** |
| (0.416) | |
| Constant | -17.579** |
| (6.758) | |
| Observations | 50 |
| R2 | 0.651 |
| Adjusted R2 | 0.644 |
| Residual Std. Error | 15.380 (df = 48) |
| F Statistic | 89.567*** (df = 1; 48) |
| Note: | *p<0.1; **p<0.05; ***p<0.01 |






lm與glmOptional-RMachineLearning-01-Linear-ModelOptional-RMachineLearning-02-Generalized-Linear-Model
[[1]]
[1] 25 32 46 67 22 66 74 51 49 7 22 20 52 33 57 41 54 87 33 57
[[2]]
[1] 72 22 50 17 26 33 1 33 63 30 39 47 40 21 60 51 58 15 54 35
[[3]]
[1] 60 50 57 44 43 58 2 39 55 52 39 62 37 24 9 14 29 42 51 34
[1] 25 32 46 67 22 66 74 51 49 7 22 20 52 33 57 41 54 87 33 57
=> [1] 44.75
[1] 72 22 50 17 26 33 1 33 63 30 39 47 40 21 60 51 58 15 54 35
=> [1] 38.35
[1] 60 50 57 44 43 58 2 39 55 52 39 62 37 24 9 14 29 42 51 34
=> [1] 40.05
[1] 68 27 38 30 50 25 39 56 11 63 30 61 31 30 39 65 63 33 57 77
=> [1] 44.65
[1] 36 54 34 29 56 22 53 17 24 18 24 7 50 63 57 58 38 35 59 48
=> [1] 39.1
[1] 50 31 26 88 49 22 18 39 70 47 81 55 31 36 19 1 54 14 37 50
=> [1] 40.9
[1] 87 40 40 20 56 38 42 22 23 47 46 10 3 50 71 47 45 43 84 41
=> [1] 42.75
[1] 52 47 24 25 55 37 20 55 15 63 48 45 30 37 41 21 43 10 26 22
=> [1] 35.8

樣本平均值 - 母體平均值樣本的變異數Bias^2 + Variance = MSE)
\[dist = \beta_0 + \beta_1 speed + \beta_2 speed^2 + \beta_3 speed^3\]

\[dist = \beta_0 + \beta_1 speed + \beta_2 speed^2 + \beta_3 speed^3 + 10 (\beta_1^2 + \beta_2^2 + \beta_3^2)\]



Optional-RMachineLearning-03-Regularization
\[l(y, f(x) = (y - f(x))^2\]
\[l(y, f(x)) = \left\{\begin{array}{lc} 0 & \text{ if } \left\lVert y - f(x) \right\rVert < \varepsilon \\ \left\lVert y - f(x) \right\rVert - \varepsilon & \text{ otherwise } \end{array}\right.\]


Optional-RMachineLearning-04-Support-Vector-Machine

Optional-RMachineLearning-05-Decision-Tree

https://citizennet.com/blog/2012/11/10/random-forests-ensembles-and-performance-metrics/




Optional-RMachineLearning-06-Gradient-Boosted-Decision-Tree








